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Three decades after their discovery, the unique long-range structure of

quasicrystals still poses a perplexing puzzle. The fact that some ancient Islamic

patterns share similar quasi-periodic symmetries has prompted several scientists

to investigate their underlying geometry and construction methods. However,

available structural models depend heavily on local rules and hence they were

unable to explain the global long-range order of Islamic quasi-periodic patterns.

This paper shows that ancient designers, using simple consecutive geometry,

have resolved the complicated long-range principles of quasi-periodic forma-

tions. Derived from these principles, a global multi-level structural model is

presented that is able to describe the global long-range translational and

orientational order of quasi-periodic formations. The proposed model suggests

that the position of building units, locally and globally, is defined by one

framework, and not tiled based on local rules (matching, overlapping or

subdividing). In this way, quasi-periodic formations can grow rapidly ad

infinitum without the need for any defects or mismatches. The proposed model,

which presents a novel approach to the study of quasi-periodic symmetries, will

hopefully provide a deeper understanding of the structure of quasicrystals at

an atomic scale, allowing scientists to achieve improved control over their

composition and structure.

1. Introduction

The unexpected discovery of quasicrystals in the early

1980s attracted significant scientific interest because of

their unusual structural properties, exhibiting symmetries

long thought forbidden in classical crystallography

(Shechtman et al., 1984). The atoms in these unusual

structures are neither arranged in neat rows at regularly

spaced intervals, similar to crystals, nor scattered randomly,

similar to glass. Instead, they exhibit a complicated

long-range translational order that is not periodic and

a long-range orientational order (Levine & Steinhardt, 1986;

Yamamoto & Takakura, 2008). To understand the unusual

structural properties of quasicrystals, scientists turned to

alternative structural models. One early model for describing

quasicrystals was based on a tiling discovered by

mathematical physicist Roger Penrose in the 1970s (Penrose,

1974). These tiling patterns consist of two differently

shaped tiles that join neatly, according to local matching

rules, to cover a flat surface completely. Quasi-periodic

patterns can also be generated mathematically using the

inflation–deflation operation (De Bruijn, 1981a), the grid

method (De Bruijn, 1981b), the strip projection method

(Kramer, 1982), the cut projection method (Bak, 1986) and

the generalized dual method (Socolar et al., 1985). Although

these structural models provide important insights into

understanding the structure of quasi-periodic patterns, there is

still significant information lacking concerning the determi-

nation of their long-range order.

The discovery of ancient Islamic patterns with quasi-

crystalline structural properties has triggered significant

discussion and a number of debates on the scientific relevance

of Islamic geometry. To date, three types of Islamic quasi-

periodic patterns were documented in Islamic historical

ornaments. These include octagonal (Makovicky & Fenoll

Hach-Alı́, 1996), decagonal (Makovicky, 1992, 2007, 2008;

Makovicky et al., 1998; Rigby, 2005; Lu & Steinhardt, 2007a;

Saltzman, 2008) and dodecagonal (Makovicky & Makovicky,

2011). The striking similarities between these quasi-periodic

Islamic patterns and the unique puzzling order of quasicrystals

have triggered significant research into understanding the

structural principles of Islamic formations. However, none of

these investigations were able to describe the global long-

range principles of quasi-periodic patterns in Islamic archi-

tecture.

This paper presents the first global structural model that is

able to describe the long-range translational and orientational

order of quasi-periodic formations in Islamic architecture. The

method is used to construct infinite formations of perfect

quasicrystalline patterns, including perfect Penrose tilings,

without using confusing strategies or complicated mathe-

matics.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=dm5019&bbid=BB37


2. Background

Geometry is one of the chief characteristics that give the

Islamic artistic tradition its distinct identity. This tradition was

completely inspired by a deep religious, philosophical and

cosmological approach, which embodied all aspects of life and

manifested itself in every product (Kritchlow, 1976; Al-Bayati,

1981). The vast variety of geometric formations and the strict

rules of its generation reveal an important inner dimension of

Islamic tradition: ‘unity in multiplicity and multiplicity in unity’

(Kritchlow, 1976; Al-Bayati, 1981; Jones, 1978). Islamic artists

did not seek to express themselves, but rather aimed to honor

matter and reveal the objective nature of its meaning

(Kritchlow, 1976; Jairazbhoy, 2000). This principle is repre-

sented by means of using the same proportional systems that

nature embodies, which underlie the geometry of architectural

spaces and geometric patterns (Kritchlow, 1976; Ritchard,

2007).

Traditionally, Islamic patterns were constructed by using a

compass and a straightedge; therefore the generating force of

patterns lies in the center of the circle (Kritchlow, 1976; Jones,

1978; El-Said, 1993). These complex geometric formations are

elaborations of simple constructions of circles, which are often

used to determine the underlying basic grids. Mathematically

these grids are known as tessellations, in which polygons are

repeated to fill the plane (Gonzalez, 2001). The vast varieties

of ornamental compositions are achieved by developing

different star units within different variations of the basic grids

(Kritchlow, 1976; El-Said, 1993; Al Ajlouni, 2009). These star

units are created by proportionally breaking down these

polygons to form the different designs. The final formations

are then developed through intelligent extension of parallels

forming a network of lines connecting the main unit. These

connecting formations can take different designs without

affecting the symmetry of the overall pattern. Figs. 1(a) and

1(b) show two different patterns constructed by generating

different star units within the same underlying decagon basic

grid. Fig. 1(c) shows three different line variations for

connecting the same star units.1

Interestingly, some Islamic patterns exhibit a more chaotic

arrangement of elements with the presence of some local

order but unclear long-range order (Makovicky, 1992, 2007,

2008; Makovicky et al., 1998; Lu & Steinhardt, 2007a; Rigby,

2005; Makovicky & Makovicky, 2011; Saltzman, 2008).

Examples of these patterns can be found on the Madrasa of

al-’Attarin (1323) in Fez, Morocco (Fig. 1d) and Darb-i Imam

shrine (1453) in Isfahan, Iran (Fig. 1e). The aperiodic order of

these patterns is somewhat similar to the structural signature

of quasicrystals. In their attempts to resolve the structural

order of Islamic quasi-periodic patterns, scientists investigated

the relationship between these patterns and Penrose tiling

patterns (Makovicky, 1992, 2008; Makovicky et al., 1998; Lu &

Steinhardt, 2007a; Zaslavsky et al., 1991; Chorbachi, 1989;

Bonner, 2003). Makovicky developed new variations of the

Penrose tiles based on his analyses of the patterns on the

external walls of the Gunbad-I Kabud tomb tower in Maragha,

Iran (1197) (Makovicky, 1992) and later, with colleagues,

investigated the relations between Penrose-type tiling and

traditional Islamic ornaments in Spain and Morocco (Mako-

vicky et al., 1998). Bonner has investigated three styles of self-

similarity in 14th and 15th century Islamic geometric orna-

ment (Bonner, 2003). In 2007, Lu & Steinhardt (2007a,b,c),

based on their investigation of the patterns on the Darb-i

Imam shrine (1453) in Isfahan, Iran, suggested that Islamic

decagonal quasi-periodic patterns were constructed by

combining a localized tiling approach of a special set of

decorated ‘girih tiles’ with self-similar transformations. Most

recently, Makovicky & Makovicky (2011) suggested that the

dodecagonal quasi-periodic star pattern found in Fez is based

on the Amman quasi-lattice grid.

Although the body of literature provides important insights

into understanding the local properties of Islamic quasi-

periodic patterns, nevertheless, all proposed methods so far

are based on localized rules (e.g. subdividing, matching or

overlapping) and were unable to describe the long-range
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Figure 1
The types of Islamic patterns. (a), (b) Two different periodic patterns constructed by generating different star units within the same underlying decagon
basic grid. (c) Three different line variations for connecting the same star units. (d), (e) Two examples of quasi-periodic patterns found in Islamic
architecture. (d) Quasi-periodic pattern found in the courtyard of the Madrasa of al-’Attarin (1323) in Fez, Morocco. (e) Quasi-periodic pattern found on
the walls of the Darb-i Imam shrine (1453) in Isfahan, Iran.

1 Larger versions of all of the figures presented in this paper have been
deposited in the IUCr electronic archives (Reference: DM5019). Services for
accessing these data are described at the back of the journal.



order of quasi-periodic patterns in Islamic architecture. In

addition, none of these methods could be generalized beyond

their specific case studies. As a result, many scientists have

concluded that the Muslim designers constructed these

patterns with localized tiling systems and without being aware

of their global long-range order (Makovicky, 2007; Lu &

Steinhardt, 2007c; Cromwell, 2009; Bohannon, 2007). Unfor-

tunately, the suggested tiling approach, which completely

disagrees with the generating principles and philosophy of

Islamic geometry (Kritchlow, 1976), had doubted the archi-

tectural ability of the ancient Muslim designers and, accord-

ingly, evaluated both the processes and the outputs of their

creativity. The fact that Muslim designers were able to

construct a wide variety of quasi-periodic patterns suggests

that they have used a clear and consistent formal method to

design and implement these complicated formations.

3. Solving the puzzle

Derived from the traditional principles of Islamic geometry

and based on my examination of a large number of Islamic

patterns, I present the first global multi-level hierarchical

framework model (HFM) that is able to describe the long-

range translational and orientational order of quasi-periodic

formations in Islamic architecture. I further demonstrate how

this model can be used to construct and grow infinite forma-

tions of quasi-periodic patterns and

more importantly demonstrate the

universal applicability of this method

to generate perfect quasicrystalline

formations, including infinite perfect

Penrose tilings.

The proposed model conforms to the

traditional Islamic method of using a

compass and straightedge, in which the

generating force of patterns lies in the

center of the circle. It is derived from

the principle that Islamic patterns are

based on a combination of an under-

lying basic grid and a star unit (Kritch-

low, 1976; El-Said, 1993; Al Ajlouni,

2009). While the basic grid is used to

define the type of symmetry by defining

the positions of star units within the

overall formation, the star unit defines

the internal variations of the patterns’

design, without affecting the overall

symmetry. Accordingly, the underlying

basic grid is the key to resolving the

order of Islamic quasi-periodic patterns.

As an illustration of this model,

consider the quasi-periodic cartwheel

pattern in Fig. 2( f), which was

commonly used in Seljuk architecture

(Schneider, 1980) [e.g. the Darb-i Imam

shrine (1453) and the Friday Mosque in

Isfahan, Iran]. The full sequence of

constructing the quasi-periodic cart-

wheel pattern is demonstrated in Fig. 2.

A framework of nested decagrams (Fig.

2a) serves as the underlying basic grid.

The framework grows based on the

Fibonacci sequence. As we add more

and more decagrams, the ratio between

the radii of any two successive deca-

grams is equal to the golden ratio. If we

denote the radius of the nth decagram

by rn and the next larger radius by

rn+1, then the ratio rn+1/rn is equal to

the golden ratio ’ = (1 + 51/2)/2. All
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Figure 2
The sequence of constructing the cartwheel pattern of the first-level hierarchy of the global quasi-
periodic empire. (a) A framework of the nested decagrams, which grows based on the Fibonacci
sequence, serves as the underlying basic grid for the quasi-periodic pattern. The size of the central
star ‘seed’ unit is proportional to the size of the framework and is strictly derived from the
diminution sequence of the nested decagrams. (b) The main star unit and the connecting formations.
(c) The positions of star units are determined entirely by the network of the nested decagrams. The
black dots correspond to the center position of all instances of the star unit. (d) The connecting
formations are formed by overlapping the main units. (e) The final line configuration of the first-
level cartwheel of the global quasi-periodic empire. ( f ) The final rendered pattern of the first-level
hierarchy of the global quasi-periodic empire. (g) A different possible connecting arrangement,
which is constructed by extending the lines of the main star units to meet. (h), (i) The process of
constructing a new variation of the cartwheel pattern.



dimensions within this sequence are related to each other by

the golden ratio proportional system.

According to the HFM model, the quasi-periodic empire is

generated around one main ‘center of origin’, the center of the

global tenfold proportional system. The size of the central star

unit ‘seed’ unit is proportional to the size of the framework

and is strictly derived from the diminution sequence of the

nested decagrams (Fig. 2a). The positions of star units are

determined entirely by the network of the nested decagrams.

The black dots in Fig. 2(a) correspond to the center position of

all instances of the star unit (Fig. 2c). The connecting forma-

tions between the main star units are determined by

arrangements of overlapping star units (Fig. 2b). These specific

arrangements, which are indicated by the gray decagons with

the blue centers in Fig. 2(d), create patterns of two basic

polygons: a hexagon and a bowtie (shown as shaded in Fig.

2b). The positions of the overlapping decagons are determined

by the framework of the nested decagram, where the blue

centers are located according to certain intersection points

(Fig. 2a). The same overlapping arrangement around the

central seed unit is also used to determine the connecting

formations around the ten peripheral star units. The final line

configuration of the cartwheel is shown in Fig. 2(e). Histori-

cally, these patterns were never merely rendered as lines.

Often, the lines are thickened when incorporated into

different material and sometimes broken up to suggest an

interlacing pattern (Gonzalez, 2001). Fig. 2( f) shows the final

rendered pattern of the first-level hierarchy of the global

quasi-periodic empire.

It is also important to note that the connecting formations

can take different internal designs without affecting the

overall symmetry of the pattern. Fig. 2(g) shows a different

possible connecting arrangement, which is constructed by

extending the lines of the main star units. Figs. 2(h) and 2(i)

demonstrate the process of constructing the new variation of

the cartwheel pattern.

4. Growing the quasi-periodic empire

The construction of the global empire of the quasi-periodic

cartwheel pattern requires building a progression of multi-

level hierarchical formations. In this infinite multi-generation

order, the geometric arrangement of the next higher-level

order is governed by a new generation of the nested deca-

grams, which is derived from the same proportional system. In

this sequence, the construction process of the second-level

order is similar to the process of constructing the first-level

order, explained earlier. The only difference is that the ‘seed’

unit in the second-level order is actually the final constructed

cartwheel pattern of the first-level hierarchy (Fig. 2f). These

cartwheels are distributed according to a new generation

of nested decagrams (Fig. 3a). The black dots in Fig. 3(a)

correspond to the center position of all instances of the cart-

wheel unit (Fig. 3b). The sequences of constructing the two

main connecting formations, which are used to fill in the gaps

between the main cartwheel units, are shown in Figs. 3(c) and

3(d). Following the same basic polygonal arrangements used

in the first hierarchy, the internal arrangements of these
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Figure 3
The sequence of constructing the pattern of the second-level hierarchy of
the global quasi-periodic empire. (a) A new generation of the framework
of the nested decagrams serves as the underlying basic grid for the
second-level quasi-periodic pattern. The central star ‘seed’ unit is the
same final cartwheel pattern in Fig. 2( f ). (b) The distribution of the main
cartwheel units and their connecting formations are determined entirely
by the network of the nested decagrams. (c), (d) The two connecting
formations used to fill the gaps between the main star units. (e) The final
rendered pattern of the second-level hierarchy of the global quasi-
periodic empire.

Figure 4
A closer look at one axis of the final pattern of the second-level hierarchy
of the global quasi-periodic empire reveals two main clusters repeating
based on the Fibonacci sequence.



connecting formations are determined by

combining two basic polygons: a hexagon

and a bowtie (Figs. 3c and 3d). In this

arrangement, the positions of all units are

guided by the line decoration of the two

basic polygons (Figs. 3c and 3d). Although

this pattern shows one specific arrange-

ment, other internal formations are also

possible. Further research into the

different possible formations and their

rules is still needed. Fig. 3(e) shows the

final pattern of the second-level hierarchy

of the global quasi-periodic empire. A

closer look at one axis of this empire

reveals two main clusters repeating based

on the Fibonacci sequence (Fig. 4).

Building on the same sequence, gener-

ating the next higher-level cluster also

follows the same process, in which the new

higher-generation order is built on the

previous order. The final generated

pattern of the previous order (Fig. 3e) acts

as the ‘seed’ unit for the third-level

generation order. This process can grow

indefinitely to build an infinite structure of

quasi-periodic formations.

5. The universal applicability of the
HFM

To demonstrate the universal applicability

of the HFM method to construct a variety

of quasi-periodic patterns in historical Islamic architecture,

consider the following two examples. The first example is the

quasi-periodic pattern on the interior walls of the courtyard

of the Madrasa of al-’Attarin (1323), Fez, Morocco (Fig. 5a).

Fig. 5 demonstrates the sequence of constructing the first-

level cartwheel pattern of the global empire. In this sequence,

a framework of nested decagrams (Fig. 5b) serves as the

underlying basic grid. The size of the central ‘seed’ unit is

proportional to the size of the framework and is strictly

derived from the diminution sequence of the nested deca-

grams. The black dots in Fig. 5(b) correspond to the center

position of all instances of the red star unit and the blue

dots correspond to the center position of all instances of the

blue unit (Fig. 5d). Two different main units and four

connecting formations are used (Fig. 5c). The red star unit

has predominance over the blue main unit and the main

two seed units have predominance over the connecting

formations. The internal line formations of these units

are flexible and can take a different design without affecting

the overall symmetry. As shown in Fig. 5(e), the pattern on

the interior walls of the Madrasa of al-’Attarin in Fez, which

is spread over two cartwheels, is part of a larger quasi-

periodic empire. The sequence of constructing the second-

level order of the quasi-periodic empire is shown in Fig. 6.

According to this sequence, the generated cartwheel in Fig.
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Figure 5
The sequence of constructing the cartwheel pattern of the first-level hierarchy of the quasi-
periodic pattern on the interior walls of the courtyard of the Madrasa of al-’Attarin (1323), Fez,
Morocco. (a) A photograph of the quasi-periodic pattern on the interior walls of the courtyard of
the Madrasa of al-’Attarin (1323), Fez, Morocco. [Basel Kotob (1990). Courtesy of the Aga Khan
Visual Archive, MIT. This material may be protected by copyright law (Title 17 US Code).] (b) A
framework of the nested decagrams which serves as the underlying basic grid for the first-level
quasi-periodic pattern. The central star ‘seed’ unit is proportional to the size of the framework
and is strictly derived from the diminution sequence of the nested decagrams. (c) The two main
star units and their different connecting formations. (d) The final cartwheel pattern of the first-
level hierarchy of the global quasi-periodic empire. The distribution of the main units and their
connecting formations are determined entirely by the network of the nested decagrams. The
black and blue dots correspond to the center position of all instances of the star units. (e), (f) The
overall quasi-periodic pattern on the interior walls of the courtyard of the Madrasa of al-’Attarin
(1323), Fez, Morocco, is part of the second-level global empire (Fig. 6).

Figure 6
The sequence of constructing the second-level hierarchy of the quasi-
periodic pattern on the interior walls of the courtyard of the Madrasa of
al-’Attarin (1323), Fez, Morocco. (a) A new generation of the framework
of the nested decagrams serves as the underlying basic grid for the
second-level quasi-periodic pattern. The central ‘seed’ unit is the same
final cartwheel pattern generated in Fig. 5(d). The black dots correspond
to the center position of all instances of the main cartwheel units. (b) The
distribution of the main cartwheel units according to the network of the
nested decagrams. (c) The main cartwheel unit and the two connecting
formations. (d) The overall quasi-periodic pattern on the interior walls of
the courtyard of the Madrasa of al-’Attarin (1323), Fez, Morocco, is part
of the second-level global empire.



5(d) acts as the ‘seed’ unit for

the second-level hierarchy (Fig. 6a).

Similar to the first-level hierarchy,

the connecting formations are flexible

and can take different designs

without affecting the overall symmetry.

However, more research into under-

standing the different possible forma-

tions is still needed. The final empire

confirms that the pattern on the

walls of the Madrasa of al-’Attarin

is derived from the second-

level hierarchy of the quasi-periodic

empire. Building on the same process,

this pattern can be expanded indefi-

nitely.

The second case is the pattern on the

external walls of the Gunbad-I Kabud

tomb tower in Maragha, Iran (1197)

(Fig. 7a). The pattern, spread over each

of two adjusting panels on the walls of

the Gunbad-I Kabud tomb tower, is

part of a quasi-periodic cartwheel

pattern (Fig. 7a). Fig. 7 demonstrates

the sequence of constructing the first-

level cartwheel pattern of the global

empire. A framework of nested deca-

grams (Fig. 7b) serves as the underlying

basic grid. The size of the ‘seed’ unit

is proportional to the size of the

framework and is strictly derived from

the diminution sequence of the nested

decagrams (Fig. 7b). Two different

main units are used (Fig. 7c). The two

units can be interchanged without affecting the overall

symmetry of the pattern. The positions of all main units are

determined entirely by the network of the nested decagrams

(Fig. 7d). The connecting formations are flexible and can take

different formations without affecting the overall symmetry

(Fig. 7e). Fig. 7( f) shows the final cartwheel pattern of the

first-level hierarchy of the global quasi-periodic empire. While

Lu & Steinhardt (2007a,c) have argued that this pattern is

explicitly periodic, Makovicky (2007), on the other hand,

questioned if it can be expanded indefinitely. The sequence of

constructing the second-level order of the quasi-periodic

empire is shown in Fig. 8. According to this sequence, the

generated cartwheel in Fig. 7( f) acts as the ‘seed’ unit for the

second-level hierarchy (Figs. 8a and 8b). The internal

arrangements of the two main connecting formations are

determined by combining two basic polygonal units: a

hexagon and a bowtie (Fig. 8c). Similar to the first-level

hierarchy, these line formations are flexible and can take

different designs without affecting the overall symmetry.

However, as stated earlier, more research into understanding

the different possible formations and their rules is needed.

The construction sequence of the second-level hierarchy (Fig.

8) confirms that the pattern, spread over each of two adjusting
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Figure 7
The sequence of constructing the cartwheel pattern of the first-level hierarchy of the quasi-periodic
pattern on the external walls of the Gunbad-I Kabud tomb tower in Maragha, Iran (1197). (a) A
photograph of the external walls of the Gunbad-I Kabud tomb tower in Maragha, Iran (1197).
[Sheila Blair & Jonathan Bloom (1984). Courtesy of the Aga Khan Visual Archive, MIT. This
material may be protected by copyright law (Title 17 US Code).] The pattern, spread over each of
two adjusting panels on the walls of the Gunbad-I Kabud tomb tower in Maragha, is part of the first-
level cartwheel pattern. (b) A framework of the nested decagrams serves as the underlying basic grid
for the first-level quasi-periodic pattern. The central star ‘seed’ unit is proportional to the size of the
framework and is strictly derived from the diminution sequence of the nested decagrams. (c) The two
main star units and their different connecting formations. (d), (e) The distribution of the main units
and their connecting formations are determined entirely by the network of the nested decagrams.
The black dots correspond to the center position of all instances of the two main units. These can be
interchanged without affecting the overall symmetry. ( f ) The final cartwheel pattern of the first-level
hierarchy of the global quasi-periodic empire.

Figure 8
The sequence of constructing the second-level hierarchy of the quasi-
periodic pattern on the external walls of the Gunbad-I Kabud tomb tower
in Maragha, Iran (1197). (a) A new generation of the framework of the
nested decagrams serves as the underlying basic grid for the second-level
quasi-periodic pattern. The central ‘seed’ unit is the same final cartwheel
pattern generated in Fig. 7( f ). (b) The distribution of the main cartwheel
units according to the network of the nested decagrams. (c) The different
connecting formations. (d) The final pattern of the second-level hierarchy
of the global quasi-periodic empire.



panels on the walls of the Gunbad-I Kabud

tomb tower in Maragha, is in fact part of a

global quasi-periodic empire and can be

expanded indefinitely.

6. Constructing new quasicrystalline
formations

One important characteristic of using the

hierarchical proportional framework is that

it allows for the construction of a wide

variety of fivefold and tenfold quasicrys-

talline patterns. This is achieved by chan-

ging two parameters: the internal design of

the ‘seed’ units and the distribution of

these units by the framework. To illustrate

this point, consider the example shown in

Fig. 9. Fig. 9(a) shows the same framework

used in the previous example, but with a

different distribution of ‘seed’ units. The

seed units are created by proportionally

breaking down the decagon to form the

final designs (Fig. 9b). The new distribution

of these units is shown in Fig. 9(e). The

connecting formations between the main

units are actually fragments of the main

seed unit and are shown in Fig. 9(c) and

their combinations are shown in Fig. 9(d).

The final reconstructed pattern of the first-

level hierarchy is shown in Fig. 9( f).

Derived from this process, it is possible

to deduce the inflation rules for this pattern

(Fig. 9g). The new pattern can be mapped

perfectly to Penrose tiling systems. Fig.

9(h) shows the kite and dart with the new decoration. Fig. 9(i)

shows the result from mapping the same inflation rules of

the new pattern to Penrose tiles. The result from applying

the same inflation rules creates perfect Penrose formations

(Fig. 9j).

Constructing the global empire of the new pattern follows

the same process described in the previous examples (Fig. 10).

The ‘seed’ unit of the second-level hierarchy is the same final

generated pattern of the first-level order, shown in Fig. 9( f).

The connecting elements (Fig. 10c) are fragments of the new

‘seed’ unit. The final generated pattern of the second-level

hierarchy of the global quasicrystalline empire is shown in

Fig. 10(d).

An important characteristic of using this multi-level

proportional system is that the same elements of the patterns

recur at different scales. Mathematicians often describe this as

the ‘self-similarity’ principle, which is the key to under-

standing the geometrical similarities between these formations

and structures in the natural world, including quasicrystals. A

close-up detail of the generated empire in Fig. 10(d) reveals

the second-level inflation rules. The same rules can be

deduced from the global empire of perfect Penrose tiling

(Fig. 11). A detailed description of how to use the HFM to
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Figure 9
The sequence of constructing the first-level hierarchy of the new quasicrystalline pattern. (a) A
framework of the nested decagrams, which serves as the underlying basic grid for the first-level
quasicrystalline empire. The central star ‘seed’ unit is proportional to the size of the framework
and is strictly derived from the diminution sequence of the nested decagrams. (b) The main
‘seed’ unit is created by proportionally breaking down the decagon to form the final designs. (c)
The three different connecting formations are fragments of the main seed unit. (d) The different
combinations between the main units and the connecting formations. (e) The distribution of the
main units and their connecting formations are determined entirely by the network of the nested
decagrams. The black dots correspond to the center position of all instances of the main units.
( f ) The final cartwheel pattern of the first-level hierarchy of the global quasicrystalline empire.
(g) The inflation rules for the new generated pattern. (h) The new pattern can be mapped
perfectly to Penrose tiling patterns; the kite and dart with their new decoration. (i) The result
from mapping the same inflation rules of the new pattern to Penrose tiles. ( j) Perfect Penrose
formations created by applying the inflation rules in Fig. 9(i).

Figure 10
The sequence of constructing the second-level hierarchy of the new
quasicrystalline pattern generated in Fig. 5. (a) A new generation of the
framework of the nested decagrams serves as the underlying basic grid for
the second-level quasicrystalline pattern. The central ‘seed’ unit is the
same final cartwheel pattern generated in Fig. 9( f ). (b) The distribution
of the main cartwheel units according to the network of the nested
decagrams. (c) The different connecting formations. (d) The final pattern
of the second-level hierarchy of the global quasicrystalline empire.



construct the global empires of two perfect Penrose tiling

systems can be found in Al Ajlouni (2011).

The most striking quality arising from the application of this

specific formation is that it allows the distribution of an

indefinitely large number of elements with a regular spacing, a

property described as long-range order. This quality is evident

through the distribution of the main units within the global

empire (Figs. 10d and 11). The distances between these units

are multiplications of ’ (1.618) and 1 + ’ (2.6180).

7. Conclusions

In this paper, I have presented a global construction model

(HFM) that is able to describe the long-range translational

and orientational order of quasi-periodic formations in

Islamic architecture. This model works in perfect concert with

the conceptual framework, philosophy and ‘conventional’

methods, which, for centuries, have generated this carefully

calculated art form. The evidence presented in this paper

suggests that the quasi-periodic patterns in Islamic archi-

tecture were conceived and constructed through a global

system and not based on local rules (e.g. tiling, subdividing or

overlapping). In this way, quasi-periodic formations can grow

rapidly ad infinitum without the need for any defects or

mismatches. Moreover, the findings of this paper suggest that

ancient Muslim designers, by using the most primitive tools

(a compass and a straightedge), were able to unlock the

mysteries of the global long-range order of quasicrystalline

formations, which the West is still struggling to resolve.

This new method, which can be used as a general guiding

principle for constructing new quasi-periodic formations,

could possibly provide a deeper understanding of the structure

of quasicrystals at an atomic scale, allowing scientists to

achieve improved control over their composition and struc-

ture, potentially leading to the development of new materials

and devices. In addition, this novel method provides an easy

tool for mathematicians, teachers, designers and artists to

generate and study these complicated quasi-periodic symme-

tries.

Future efforts should be directed toward investigating the

application of similar hierarchical global methods to generate

other perfect quasicrystalline formations of seven-, eight-,

nine-, 11- and 12-fold symmetries, and how these abstract

geometric models can actually correlate with real quasi-

periodic structures.
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Figure 11
The second-level hierarchy of the global quasicrystalline empire of a
Penrose tiling pattern. The pattern shows that the second-level inflation
rules are the same as the inflation rules shown in Fig. 10(d).
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